Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.750
Filter
1.
Heredity (Edinb) ; 132(5): 267-274, 2024 May.
Article in English | MEDLINE | ID: mdl-38538720

ABSTRACT

Organisms have diverse biological clocks synchronised with environmental cycles depending on their habitats. Anticipation of tidal changes has driven the evolution of circatidal rhythms in some marine species. In the freshwater snail, Semisulcospira reiniana, individuals in nontidal areas exhibit circadian rhythms, whereas those in tidal areas exhibit both circadian and circatidal rhythms. We investigated whether the circatidal rhythms are genetically determined or induced by environmental cycles. The exposure to a simulated tidal cycle did not change the intensity of circatidal rhythm in individuals in the nontidal population. However, snails in the tidal population showed different activity rhythms depending on the presence or absence of the exposure. Transcriptome analysis revealed that genes with circatidal oscillation increased due to entrainment to the tidal cycle in both populations and dominant rhythmicity was consistent with the environmental cycle. These results suggest plasticity in the endogenous rhythm in the gene expression in both populations. Note that circatidal oscillating genes were more abundant in the tidal population than in the nontidal population, suggesting that a greater number of genes are associated with circatidal clocks in the tidal population compared to the nontidal population. This increase of circatidal clock-controlled genes in the tidal population could be caused by genetic changes in the biological clock or the experience of tidal cycle in the early life stage. Our findings suggest that the plasticity of biological rhythms may have contributed to the adaptation to the tidal environment in S. reiniana.


Subject(s)
Circadian Rhythm , Fresh Water , Snails , Transcriptome , Animals , Snails/genetics , Snails/physiology , Circadian Rhythm/genetics , Gene Expression Profiling , Biological Clocks/genetics , Ecosystem
2.
Article in English | MEDLINE | ID: mdl-38360203

ABSTRACT

Chemical cues play important roles in mediating ecological interactions. Oxylipins, oxygenated metabolites of fatty acids, are one signalling molecule type that influences the physiology and function of species, suggesting their broader significance in chemical communication within aquatic systems. Yet, our current understanding of their function is restricted taxonomically and contextually making it difficult to infer their ecological significance. Snails and leeches are ubiquitous in freshwater ecosystems worldwide, yet little is known about their oxylipin profiles and the factors that cause their profiles to change. As snails and leeches differ taxonomically and represent different trophic groups, we postulated oxylipin profile differences. For snails, we hypothesized that ontogeny (non-reproductive vs reproductive) and predation (non-infested vs leech-infested) would affect oxylipin profiles. Oxylipins were characterized from water conditioned with the snail Planorbella duryi and leech Helobdella lineata, and included three treatment types (snails, leeches, and leech-infested snails) with the snails consisting of three size classes: small (5-6 mm, non-reproductive) and medium and large (13-14 and 19-20 mm, reproductive). The two species differed in the composition of their oxylipin profiles both in diversity and amounts. Further, ontogeny and predation affected the diversity of oxylipins emitted by snails. Our experimental profiles of oxylipins show that chemical cues within freshwater systems vary depending upon the species emitting the signals, the developmental stage of the species, as well as from ecological interactions such as predation. We also identified some candidates, like 9-HETE and PGE2, that could be explored more directly for their physiological and ecological roles in freshwater systems.


Subject(s)
Leeches , Oxylipins , Animals , Ecosystem , Predatory Behavior , Snails/physiology , Fresh Water
3.
Science ; 383(6678): 114-119, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38175895

ABSTRACT

Key innovations are fundamental to biological diversification, but their genetic basis is poorly understood. A recent transition from egg-laying to live-bearing in marine snails (Littorina spp.) provides the opportunity to study the genetic architecture of an innovation that has evolved repeatedly across animals. Individuals do not cluster by reproductive mode in a genome-wide phylogeny, but local genealogical analysis revealed numerous small genomic regions where all live-bearers carry the same core haplotype. Candidate regions show evidence for live-bearer-specific positive selection and are enriched for genes that are differentially expressed between egg-laying and live-bearing reproductive systems. Ages of selective sweeps suggest that live-bearer-specific alleles accumulated over more than 200,000 generations. Our results suggest that new functions evolve through the recruitment of many alleles rather than in a single evolutionary step.


Subject(s)
Biological Evolution , Reproduction , Snails , Viviparity, Nonmammalian , Animals , Haplotypes , Phylogeny , Reproduction/genetics , Selection, Genetic , Snails/genetics , Snails/physiology , Viviparity, Nonmammalian/genetics , Viviparity, Nonmammalian/physiology
4.
Sci Total Environ ; 917: 170440, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286280

ABSTRACT

The aim of this work was to study the sublethal effects, biokinetics, subcellular partitioning and detoxification of arsenic in two native Chinses species, Bellamya quadrata and Cipangopaludina cathayensis, as well as an exotic South American species, Pomacea canaliculata. The exotic species exhibited higher tolerance than native species. Physiologically based pharmacokinetic model results showed that the exotic species P. canaliculata exhibited a lower bioaccumulation rate and a greater metabolism capacity of As. Subcellular partitioning of As revealed that P. canaliculata exhibits superior As tolerance compared to the native species B. quadrata and C. cathayensis. This is attributed to P. canaliculata effective management of the metal sensitive fraction and enhanced accumulation of As in the biologically detoxified metal fraction. Under As stress, the biochemical parameters (superoxide dismutase, malondialdehyde, glutathione and glutathione S-transferase) of the exotic species P. canaliculata changed less in the native species, and they returned to normal levels at the end of depuration period. Our study provides evidence of the superior survival capability of the exotic species P. canaliculata compared to the native species B. quadrata and C. cathayensis under environmentally relevant levels of As contamination.


Subject(s)
Arsenic , Snails , Animals , Snails/physiology , Arsenic/toxicity , Arsenic/metabolism
5.
Bull Environ Contam Toxicol ; 111(6): 67, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940785

ABSTRACT

Microplastics have a negative impact on aquatic ecosystems. Gastropod mollusks serve as bioindicators and are good model systems for ecotoxicological studies. To assess oxidative damage, we exposed the ram's horn snail, Indoplanorbis exustus, to various concentrations of low-density polyethylene microplastics (size range 8-100 µm). The main objectives were microplastics preparation, characterization, and examination of their effect on the essential organs of I. exustus. Scanning electron microscopy, fourier transform infrared spectroscopy and x-ray diffraction techniques confirmed the polymer type of laboratory prepared polyethylene microplastics. The LC50 value of microplastics for snails was calculated to be 872 mg/L after 96 h of exposure. We observed a significant elevation in superoxide dismutase, catalase and lipid peroxidation levels with increasing concentrations of microplastics. Microplastics exposure also affected protein content, total food intake and total weights. Moreover, snails failed to recover post-treatment. Snails collected from contaminated source of microplastics served as positive control for the study. Hence, we can conclude that microplastics cause overall impairment in the physiological parameters and show adverse effects on the freshwater snail, I. exustus.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Male , Sheep , Microplastics/metabolism , Plastics/toxicity , Polyethylene/toxicity , Survival Rate , Ecosystem , Fresh Water , Snails/physiology , Oxidative Stress , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Eating
6.
Aquat Toxicol ; 261: 106629, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37459717

ABSTRACT

Lithium (Li) is present in many modern technologies, most notably in rechargeable batteries. Inefficient recycling strategies for electronic waste containing this element may result in its release into aquatic systems, which may induce harmful effects on wildlife. The present study evaluated the effect of Li contamination on the gastropod Tritia reticulata exposed to different concentrations of Li (100, 200, 500 and 1000 µg L-1) for 21 days. Biochemical analyses showed that this species was not significantly affected by this contaminant at the cellular level, as no significant differences were observed in terms of metabolism, oxidative stress, and neurotoxicity. Results further revealed that snails attempted to avoid Li accumulation by burying in the sediment at a faster rate when exposed to the highest concentrations (500 and 1000 µg L-1). More research is needed to fully assess the response of T. reticulata to Li contamination, such as investigating longer exposure periods or other endpoints.


Subject(s)
Lithium , Snails , Water Pollutants, Chemical , Animals , Lithium/toxicity , Lithium/metabolism , Oxidative Stress , Snails/physiology , Water Pollutants, Chemical/toxicity , Electronic Waste
7.
Bull Environ Contam Toxicol ; 110(2): 41, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36652007

ABSTRACT

The exposure of animals to pollution in ecosystems is not always chronic. Toxicants can remain in aquatic ecosystems for a short-term. To improve the extrapolation of laboratory results to natural scenarios the inclusion of post-exposure periods is a relevant issue. The present study focuses on the assessment of cadmium toxicity on survival and behavior of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca) during exposure and post-exposure. Animals were exposed for 48 h to cadmium (0.05, 0.14, 0.44 and 1.34 mg Cd/L) and 168 h of post-exposure. During the post-exposure period an increase in mortality in all concentrations was observed. The effects observed during the post-exposure period on the LC50 and EC50 were significant. During the post-exposure, behavior showed a clear recovery in surviving animals exposed to 0.44 mg Cd/L. Animals exposed to 0.05 mg Cd/L did not show differences with control. Therefore, mortality after exposure should be included in the ecotoxicological bioassays for a more realistic estimation of the cadmium effects. To assess the degree of animal recovery after cadmium exposure, behaviour has been shown as an adequate parameter.


Subject(s)
Cadmium , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity , Snails/physiology , Ecotoxicology , Lethal Dose 50
8.
Oecologia ; 201(2): 409-419, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36682011

ABSTRACT

Individuals exposed to predation risk can produce offspring with altered phenotypes. Most work on predation-induced parental effects has focused on maternal effects or on generalized parental effects where both parents are exposed to risk. We conducted an experiment to measure and compare maternal and paternal effects on offspring phenotypes and test for interactions in those effects. We exposed 82 snails from 22 lines to control or predator cues and created line dyads with the four possible mating pairings of control and predator cue exposed individuals. We measured the resulting body masses, shell masses, shell shapes, and anti-predator behaviors of the offspring. We found some evidence that offspring were larger and heavier when the mother was exposed to predation cues, but that this effect was negated when the father was also exposed. The mass of offspring shells relative to their total mass was unaffected by parental treatments. Shell shape was marginally affected by maternal treatment, but not paternal treatment. Behavioral responses to cues were not affected by maternal or paternal treatments. Our results suggest potential conflict between male and female parental effects and highlight the importance of examining the interactions of maternal and paternal effects.


Subject(s)
Maternal Inheritance , Paternal Inheritance , Animals , Male , Female , Snails/physiology , Fresh Water
9.
Sci Total Environ ; 864: 160939, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36549544

ABSTRACT

Invasive species that compromise ecosystem functioning through direct and indirect (or cascading) pathways are a rising global threat. Apple snails (Pomacea spp.) are semi-aquatic freshwater invaders that have exerted devastating ecological and economic impacts on agricultural wetlands and are emerging as a major threat to the structures and functions of natural wetlands. In this research, we conducted a field mesocosm experiment in subtropical wetlands in Florida, USA to investigate how P. maculata alter a suite of wetland vegetation, water, and soil processes and how these effects vary across wetlands under two different management intensities. Overall, we found that invasive snails substantially decreased aboveground biomass and vegetation cover and exhibited preferential feeding on wetland plant species. In addition, snails increased water nutrients (e.g., total carbon, nitrogen, phosphorous and dissolved solids), but showed minimal impacts on soil pools and processes. While most effects of invasive P. maculata were similar across wetland types, certain responses (e.g., algal biomass) were divergent. Our study provides holistic evidence on multiple direct and indirect consequences of invasive apple snails along the wetland plant-water-soil continuum. By altering plant assemblages and nutrient cycling (e.g., via consumption, egestion, and excretion), P. maculata invasion could hamper vital wetland services, which is concerning for these globally vulnerable ecosystems. Differential snail effects across management intensities further suggest the need for tailored actions to mitigate apple snail impacts and conserve wetland ecosystems.


Subject(s)
Ecosystem , Wetlands , Animals , Plants , Snails/physiology , Soil , Water
10.
J Exp Biol ; 225(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36533565

ABSTRACT

Egg laying in pulmonate snails is a well-orchestrated process that involves a period of reduced locomotion, followed by substrate cleaning with rhythmic rasping of the surface to make tiny grooves, into which eggs are deposited. Although the neurohormonal control of initiating egg laying has been well established, the signals that modulate the buccal central pattern generator to substrate cleaning during egg laying are not known. Neuropeptides of the invertebrate gonadotropin-releasing hormone/corazonin family (invGnRH/CRZ) have been shown to be involved in reproduction and allied behaviors in many vertebrates and invertebrates. Here, we show that the buccal motor pattern underlying substrate cleaning during egg laying is altered by a vertebrate GnRH agonist. Signals from the intestinal nerve innervating reproductive structures, previously shown to be both necessary and sufficient for egg-laying behaviors, are blocked by a vertebrate GnRH antagonist. Further, the vertebrate GnRH-triggered response elicits rhythmic, phase 2 and non-phase 2 activity in the buccal motor pattern, with a shutdown of phase 3, indicative of repetitive rasping without accompanied swallowing behavior. Using immunohistochemistry, intracellular electrophysiology and extracellular nerve stimulation, we show that a member of the invGnRH/CRZ family of neuropeptides could be the signal that contextually switches the multifunctional buccal CPG to a biphasic rasping rhythm that underlies substrate cleaning behavior during egg laying in the pulmonate snail Planorbella (Helisoma) trivolvis.


Subject(s)
Central Pattern Generators , Neuropeptides , Animals , Snails/physiology , Neuropeptides/physiology , Gonadotropin-Releasing Hormone , Oviposition/physiology
11.
ISME J ; 16(9): 2132-2143, 2022 09.
Article in English | MEDLINE | ID: mdl-35715703

ABSTRACT

The scaly-foot snail (Chrysomallon squamiferum) inhabiting deep-sea hydrothermal vents in the Indian Ocean relies on its sulphur-oxidising gammaproteobacterial endosymbionts for nutrition and energy. In this study, we investigate the specificity, transmission mode, and stability of multiple scaly-foot snail populations dwelling in five vent fields with considerably disparate geological, physical and chemical environmental conditions. Results of population genomics analyses reveal an incongruent phylogeny between the endosymbiont and mitochondrial genomes of the scaly-foot snails in the five vent fields sampled, indicating that the hosts obtain endosymbionts via horizontal transmission in each generation. However, the genetic homogeneity of many symbiont populations implies that vertical transmission cannot be ruled out either. Fluorescence in situ hybridisation of ovarian tissue yields symbiont signals around the oocytes, suggesting that vertical transmission co-occurs with horizontal transmission. Results of in situ environmental measurements and gene expression analyses from in situ fixed samples show that the snail host buffers the differences in environmental conditions to provide the endosymbionts with a stable intracellular micro-environment, where the symbionts serve key metabolic functions and benefit from the host's cushion. The mixed transmission mode, symbiont specificity at the species level, and stable intracellular environment provided by the host support the evolutionary, ecological, and physiological success of scaly-foot snail holobionts in different vents with unique environmental parameters.


Subject(s)
Hydrothermal Vents , Animals , Hydrothermal Vents/microbiology , Metagenomics , Phylogeny , Snails/physiology , Symbiosis/genetics
12.
Physiol Biochem Zool ; 95(3): 251-264, 2022.
Article in English | MEDLINE | ID: mdl-35443148

ABSTRACT

AbstractUnderstanding the physiology of invasive species will contribute to better prediction and prevention measures to avoid the economic and environmental consequences of biological invasions. Predicting the future range of Potamopyrgus antipodarum, a globally invasive aquatic snail, relies on a comprehensive understanding of its physiological tolerances to individual and combined environmental stressors. We conducted a laboratory study to investigate the interacting effects of temperature and dissolved oxygen in shaping the abiotic niche of P. antipodarum. We generated thermal performance curves (7°C-35°C) for resting respiration rate and voluntary locomotor behaviors under normoxia and hypoxia to find the conditions that limited each performance. Extreme high (>30°C) and low (<12°C) temperatures limited respiration and activity, but respiration rate was most oxygen sensitive at low temperatures. Under hypoxic conditions, activity was less thermally sensitive. Increased activity under high temperatures (22°C-28°C) may be fueled by anaerobic metabolism. Relying on anaerobic energy is a time-limited survival strategy, so further warming and deoxygenation of freshwater systems may limit the spread of this very tolerant invasive species.


Subject(s)
Hypoxia , Snails , Animals , Fresh Water , Introduced Species , Locomotion/physiology , Oxygen , Snails/physiology , Temperature
13.
J Exp Biol ; 225(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35112704

ABSTRACT

The transfer of male accessory gland secretions is a well-investigated reproductive strategy for winning in sexual selection. An example of such a strategy is the conspicuous mating behaviour of simultaneously hermaphroditic land snails, the so-called shooting of love darts, whereby a snail drives a love dart(s) into the body of its mating partner. In the land snail Euhadra quaesita, it has been shown that a specific mucus which coats the love dart is transferred into the partner's haemolymph and that it suppresses subsequent matings in the darted individual. However, how the mucus of the love dart suppresses rematings remains unclear. In the present study, we tested the hypothesis that by injection of the dart mucus, love-dart shooters manipulate the physiology of a dart recipient and make the individual sexually inactive. In an experiment in which snails were provided with opportunities to encounter a potential mating partner, we found that the latency period to achieve sexual arousal was longer in snails injected with the dart mucus than in snails of the control treatments. This finding indicates that the dart mucus delays sexual arousal in injected snails. This delay in arousal is a novel example of the effects of the mucus in simultaneously hermaphroditic land snails. The remating suppression effect of the dart mucus is likely to occur through sexual inactivation.


Subject(s)
Sexual Behavior, Animal , Animals , Male , Mucus , Sexual Behavior, Animal/physiology , Sexual Selection , Snails/physiology
14.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34810260

ABSTRACT

Snails are model organisms for studying the genetic, molecular, and developmental bases of left-right asymmetry in Bilateria. However, the development of their typical helicospiral shell, present for the last 540 million years in environments as different as the abyss or our gardens, remains poorly understood. Conversely, ammonites typically have a bilaterally symmetric, planispiraly coiled shell, with only 1% of 3,000 genera displaying either a helicospiral or a meandering asymmetric shell. A comparative analysis suggests that the development of chiral shells in these mollusks is different and that, unlike snails, ammonites with asymmetric shells probably had a bilaterally symmetric body diagnostic of cephalopods. We propose a mathematical model for the growth of shells, taking into account the physical interaction during development between the soft mollusk body and its hard shell. Our model shows that a growth mismatch between the secreted shell tube and a bilaterally symmetric body in ammonites can generate mechanical forces that are balanced by a twist of the body, breaking shell symmetry. In gastropods, where a twist is intrinsic to the body, the same model predicts that helicospiral shells are the most likely shell forms. Our model explains a large diversity of forms and shows that, although molluscan shells are incrementally secreted at their opening, the path followed by the shell edge and the resulting form are partly governed by the mechanics of the body inside the shell, a perspective that explains many aspects of their development and evolution.


Subject(s)
Animal Shells/growth & development , Cephalopoda/growth & development , Cephalopoda/physiology , Snails/growth & development , Snails/physiology , Animals , Biological Evolution , Mechanical Phenomena , Models, Biological , Models, Theoretical , Phylogeny , Stress, Mechanical
15.
Sci Rep ; 11(1): 21621, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732760

ABSTRACT

Algal biofilms in streams are simultaneously controlled by light and nutrient availability (bottom-up control) and by grazing activity (top-down control). In addition to promoting algal growth, light and nutrients also determine the nutritional quality of algae for grazers. While short-term experiments have shown that grazers increase consumption rates of nutrient-poor algae due to compensatory feeding, nutrient limitation in the long run can constrain grazer growth and hence limit the strength of grazing activity. In this study, we tested the effects of light and phosphorus availability on grazer growth and thus on the long-term control of algal biomass. At the end of the experiment, algal biomass was significantly affected by light, phosphorus and grazing, but the interactive effects of the three factors significantly changed over time. At both high light and phosphorus supply, grazing did not initially reduce algal biomass, but the effect of grazing became stronger in the final three weeks of the experiment. Snail growth was enhanced by light, rather than phosphorus, suggesting that algal quantity rather than quality was the main limiting factor for grazer growth. Our results highlight the role of feedback effects and the importance of long-term experiments in the study of foodweb interactions.


Subject(s)
Biofilms/growth & development , Chlorella vulgaris/growth & development , Ecosystem , Eutrophication , Microalgae/growth & development , Rivers/chemistry , Snails/physiology , Animals , Light , Nitrogen/metabolism , Phosphorus/metabolism
16.
Sci Rep ; 11(1): 20709, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671070

ABSTRACT

Terpios hoshinota is a thin encrusting sponge that overgrows live scleractinian corals and it is linked to coral loss in many reefs. However, our knowledge of the species associated with this sponge species is poor. During a periodical survey of T. hoshinota in 2020, we found tiny snails crawling on the sponge in the subtropical waters around Okinawa Island, Japan. We observed egg capsules inside the sponge tissue and veliger larvae released from the egg capsules. Molecular analyses of both the snails and veliger larvae (cytochrome oxidase I, COI) showed that they were identical and belonged to Joculator sp. (family Cerithiopsidae). There was no direct observation of predation on the sponge by this snail; however, to the best of our knowledge, this is the first report on a close association between a snail and the sponge T. hoshinota.


Subject(s)
Anthozoa/physiology , Porifera/physiology , Snails/physiology , Animals , Coral Reefs , Homicide , Japan , Predatory Behavior/physiology
17.
J Invertebr Pathol ; 186: 107676, 2021 11.
Article in English | MEDLINE | ID: mdl-34634285

ABSTRACT

The snail Pseudosuccinea columella participates in the distribution of Fasciola hepatica in the environment by acting as its intermediate host. Therefore, the control of this lymnaeid is one of the ways to prevent hepatic fascioliasis. The objective of this study was to evaluate the susceptibility of P. columella to infective juveniles (IJs) of the entomopathogenic nematode (EPN) Heterorhabditis baujardi in laboratory conditions, as well as to investigate aspects related to the biochemistry and histopathology of snails exposed or not to the EPNs during three weeks. The EPN exposure induced significant reductions in the concentrations of glucose, total proteins and glycogen (gonad-digestive gland complex) in the snails during the onset of the infection, with the levels being restored as the infection progresses. These alterations were accompanied by increased hemolymph activities of aminotransferases and lactate dehydrogenase, as well as the concentrations of uric acid after the first and second weeks of the experiment. The histopathological analyses of the exposed snails revealed cell necrosis at the end of the first week, tissue inflammatory reactions one and two weeks after exposure, and degeneration three weeks afterward in comparison with the unexposed snails. Finally, scanning electronic microscopy revealed proliferation of fibrous connective tissue three weeks after exposure. The results indicate that P. columella is susceptible to H. baujardi. The exposure favored the establishment of a negative energy balance, increased the activity of enzymes related to tissue damages and promoted accumulation of nitrogen compounds in the host snails. Additionally, was observed in P. columella exposed to the EPNs, significant tissue lesions, and demonstrated the strong pathogenic potential of H. baujardi, indicating its possible application for biological control of this snail.


Subject(s)
Host-Parasite Interactions , Rhabditida/physiology , Snails/physiology , Animals , Snails/anatomy & histology , Snails/chemistry , Snails/parasitology
18.
Sci Robot ; 6(59): eabi6774, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34644158

ABSTRACT

Soft grippers that incorporate functional materials are important in the development of mechanically compliant and multifunctional interfaces for both sensing and stimulating soft objects and organisms. In particular, the capability for firm and delicate grasping of soft cells and organs without mechanical damage is essential to identify the condition of and monitor meaningful biosignals from objects. Here, we report a millimeter-scale soft gripper based on a shape memory polymer that enables manipulating a heavy object (payload-to-weight ratio up to 6400) and grasping organisms at the micro/milliscale. The silver nanowires and crack-based strain sensor embedded in this soft gripper enable simultaneous measurement of the temperature and pressure on grasped objects and offer temperature and mechanical stimuli for the grasped object. We validate our miniaturized soft gripper by demonstrating that it can grasp a snail egg while simultaneously applying a moderate temperature stimulation to induce hatching process and monitor the heart rate of a newborn snail. The results present the potential for widespread utility of soft grippers in the area of biomedical engineering, especially in the development of conditional or closed-loop interfacing with microscale biotissues and organisms.


Subject(s)
Biomedical Engineering , Equipment Design , Hand Strength/physiology , Robotics , Smart Materials/chemistry , Snails/physiology , Animals , Bioengineering , Biomimetics , Biotechnology/methods , Calibration , Elastic Modulus , Humans , Man-Machine Systems , Materials Testing , Nanowires , Pressure , Stress, Mechanical , Temperature
19.
PLoS One ; 16(10): e0258396, 2021.
Article in English | MEDLINE | ID: mdl-34644349

ABSTRACT

We described, for the first time, a case of predation of a non-arthropod species by a dung beetle species. Canthon chalybaeus Blanchard, 1843 kills healthy individuals of the terrestrial snail Bulimulus apodemetes (D'Orbigny, 1835) showing an evident pattern of physical aggressiveness in the attacks using the dentate clypeus and the anterior tibiae. The description of this predatory behaviour was complemented with the analysis of the chemical secretions of the pygidial glands of C. chalybaeus, highlighting those main chemical compounds that, due to their potential toxicity, could contribute to death of the snail. We observed a high frequency of predatory interactions reinforcing the idea that predation in dung beetles is not accidental and although it is opportunistic it involves a series of behavioural sophistications that suggest an evolutionary pattern within Deltochilini that should not only be better studied from a behavioural point of view but also phylogenetically.


Subject(s)
Coleoptera/physiology , Predatory Behavior , Snails/physiology , Animals , Exocrine Glands/chemistry , Exocrine Glands/metabolism , Gas Chromatography-Mass Spectrometry , Indoles/analysis , Indoles/isolation & purification , Methylamines/analysis , Methylamines/isolation & purification
20.
Sci Rep ; 11(1): 21016, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34697382

ABSTRACT

The gastropod infraclass Euthyneura comprises at least 30,000 species of snails and slugs, including nudibranch sea slugs, sea hares and garden snails, that flourish in various environments on earth. A unique morphological feature of Euthyneura is the presence of two pairs of sensory head tentacles with different shapes and functions: the anterior labial tentacles and the posterior rhinophores or eyestalks. Here we combine molecular phylogenetic and microanatomical evidence that suggests the two pairs of head tentacles have originated by splitting of the original single tentacle pair (with two parallel nerve cords in each tentacle) as seen in many other gastropods. Minute deep-sea snails of Tjaernoeia and Parvaplustrum, which in our phylogeny belonged to the euthyneurans' sister group (new infraclass Mesoneura), have tentacles that are split along much of their lengths but associated nerves and epidermal sense organs are not as specialized as in Euthyneura. We suggest that further elaboration of cephalic sense organs in Euthyneura closely coincided with their ecological radiation and drastic modification of body plans. The monotypic family Parvaplustridae nov., superfamily Tjaernoeioidea nov. (Tjaernoeiidae + Parvaplustridae), and new major clade Tetratentaculata nov. (Mesoneura nov. + Euthyneura) are also proposed based on their phylogenetic relationships and shared morphological traits.


Subject(s)
Gastropoda/anatomy & histology , Gastropoda/physiology , Sense Organs/anatomy & histology , Sense Organs/physiology , Snails/anatomy & histology , Snails/physiology , Animals , Biodiversity , Biological Evolution , Gastropoda/classification , Imaging, Three-Dimensional , Models, Anatomic , Phylogeny , Snails/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...